

New Technology and Solids: A Difficult Combination

U.S. DOE

Slurry Retrieval, Pipeline Transport & Plugging, and Mixing Workshop

David A. Gottschlich

January 17, 2008

Confidentiality

- Much of the information is confidential to IPA
- Less detailed version of briefing will be provided later

Purpose of this Presentation

- DOE has an ambitious and difficult waste processing mission
- Demonstrated methods will often not exist
 - New technology must be developed
- Most of the materials will not behave well
- Combination of poorly behaved materials and new technology often leads to failure
- Failure has severe consequences

Degree of Innovation Matters

- Each new step, on average, reduces operability ~10 percent in months 7 12 for all types of facilities
- Each new step, on average, increases startup duration by ~2 months for all types of facilities
 - ~3 months for solids processing facilities
- Facilities with three or more new steps are at much higher risk of outright failure
- More innovative and complex technologies need more extensive development facilities

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

IPA Background

- Independent Project Analysis (IPA) evaluates capital projects for the processing industries around the world
 - Benchmarking and Best Practices company
 - Work for most of the major oil and chemical companies
- Started 20 years ago
 - Original work began about 10 years before that at Rand
 - Much of the original work was for DOE
- Now nearly 200 employees
- We collect detailed project histories of about 800 projects each year
- We now have detailed databases of about 11,000 process facilities

Elements of Capital Effectiveness

Database (1)

- Total of about 12,000 projects
 - Average start of execution: 1Q2000
 - Size range: \$15k \$10B
 - Process facilities, non-process facilities, E&P projects, etc.
 - About 150 DOE projects (DP and WM) from the '70s, '80s, and '90s
- About 1,000 projects with new technology
- About 1,700 projects with solids processing

Database (2)

- Our goal is to examine difficulties in solids processing and innovation
- Therefore, we selected samples heavily weighted toward new technology projects
- Focus on major projects rather than smaller, plant-based projects
- We will use minerals industry as a proxy
 - Difficult materials handling
 - Materials typically cannot be characterized well—raw solids
 - Difficult processing

Some Definitions

- Startup: the period from mechanical completion of facilities (all units physically able to run) to routine operation
 - Facilities are making on-spec product but may not have achieved sustainable nameplate
- Early operability: production as a percent of nameplate capacity in months 7 through 12 after mechanical completion
- New steps: processing steps (chemical or physical) that are new in commercial use
 - New equipment, new match of equipment and feed, new chemical processing
- Heat and Material Balances Known: portion of balance equations for plant/processing train based on commercial experience

Defining New Technology (1)

- New process technology is any of the following:
 - Process chemistry that has not been used commercially
 - Incorporation of major equipment that is commercially unproven
 - New match of feed and equipment
- Scale-up of commercially proven technology is not new
- "New-to-company" is not necessarily new

Defining New Technology (2)

- IPA measures new technology in several ways:
 - Number of process steps that use new technology
 - Percentage of investment in new technology
 - Technology stepout scale

Technology Stepout Scale (1)

- Off the shelf technology
 - Project nearly duplicates proven process with modifications confined to site tailoring
- New integrations only
 - New configurations of existing, commercially proven process steps
- Minor process modification
 - One or more steps are new but order and functions of steps are unchanged from current practice

Technology Stepout Scale (2)

- Major process modification
 - Two or more steps new but core technology unchanged or can be isolated from up- and downstream
- Substantially new process
 - Analogous process may be in use but this is new path or approach
 - Core technology new and effects cannot be isolated
- All new process
 - No process like this one in use anywhere
 - Many steps new or substantially changed from prior plants

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

What History Tells Us...

- Many introductions of new technology have been business disasters!
- New technology substantially increases project failure chances
- Historically, new technology is linked with:
 - Much higher average cost growth
 - Difficult startups
 - Poorer operability
 - >40 percent of moderate and high innovation efforts were outright failures
 - <20 percent delivered all of what was promised</p>
- Difficulties can be (partially) mitigated by proper understanding and management

Startup Time

New Technology and Minerals Are a Difficult Mix

Cost Growths of First-of-a-Kind Processes Are Greater Than Ones Previously Demonstrated

Not controlled for other factors

20

What's Behind the Difficulties?

Waste handling problems

Feedstock impurity problems

Weak basic technical data

Waste Handing Problems

- 40 percent of innovative minerals processing facilities experience waste handling or treatment problems in startup
 - Versus 24 percent of other innovative process plants (pr<.01)
- In non-minerals processing plants, effects were shortlived and did not affect operability in 3rd and 4th quarters
- In minerals processing facilities, waste handling problems were associated with losses up to 22 percent of capacity in the 2nd six months (pr.<.0001)

Unexpected Impurities in Feedstocks

- Feedstock impurities are more common in minerals processing than chemical processing generally
- When they occur, they punish early operability severely, regardless of the level of innovation

Feedstock Impurity Problems Damage Performance in Minerals

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

DOE Benchmarking

- IPA benchmarked DOE projects at least twice
 - Defense Programs in 1990
 - Waste Management in 1995
- Project performance substantially lagged Industry
 - Poor cost predictability
 - Long schedules with substantial slip
 - Long startups and below nameplate operation

Why?

- Long DOE funding cycle
 - Disrupted team continuity
 - Made FEL uncertain
- Changing objectives
- Frequent lack of commercially available solutions
- Fundamentally more difficult problems
 - But even simple projects suffered the same problems

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

Weak Basic Technical Data

- Unlike liquids and gases, data for minerals processing do not scale well from smaller experimental facilities
- Minerals facilities are intrinsically more difficult to instrument than liquid and gas processing facilities making data less available from prior units
- Ambient conditions affect minerals handling and processing characteristics in ways that are unusual with liquids and gases
- As a result, basic technical data are weak for new technology minerals processing plants
- Consequences are seen in plant operability

Why Do New Technology Projects Fail?

- Push for speed prevents obtaining necessary basic data
 - As a result, everything is fast-tracked except startup
 - Shortcuts that lead to failure:
 - > Skipping the integrated pilot
 - > Short-cutting FEL
 - > Accelerating execution

Basic Data Are Basic!

- If basic data are wrong, the design will be flawed, often in fundamental way
- Because basic data underpin design, design conservatism does not help
 - You cannot engineer your way out of bad basic data
- Errors in basic data are the most common cause of failed new technology projects

Good Engineering Cannot Substitute for Complete Basic Data

- Reaction products, especially side reaction products
- Separation technology verified
- Heat and mass balances established
- Materials of construction (corrosion and erosion cannot be simulated)
- Temperature and pressure control
- Engineered equipment specifications
- Mechanical equipment selection

H&M Balance Knowledge Is Critical for Minerals Operability

Percent of Balance Equations Based on Commercial Experience

But H&M Balance Knowledge Is Critical for Minerals Operability

Processing Solids

- Solids hate mechanical equipment and seek to destroy it by force
- Solids processing is highly empirical
- Processing characteristics cannot be safely predicted from theory or small-scale experiments
 - Behavior of solids under process conditions often scaledependent
 - > Fluid beds change characteristics with size
 - > Slurry reactors experience wall effects
 - > Speeds required at scale induce carryover of materials

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

Defining the Integrated Project Team

 An integrated project team has all owner functions fully represented on the team starting in front-end loading.
 At least the following are present:

- Environmental
- Planning & Scheduling
- Geology
- Mine Eng./planning

- Business
- Engineering Mine/Plant
- Construction
- R&D

- Maintenance
- Mine/Plant operations
- Health & Safety
- Startup
- These team members are identified prior to project authorization and have specific responsibilities that are defined and understood by all team members
- The team members have the authority to make decisions for their function
- Reasonable continuity must be maintained

Staffing New Technology Programs

- Three critical factors in new technology staffing:
 - Core team should have continuity from pilot(s) through commercialisation of first unit
 - Core team must include science/technology base, solid project expertise, and high-quality process engineers
 - Additional resources must be made available as needed and requested

Team Integration Directly Improves Operability of Minerals Plants

Team Integration also...

- Reduces deleterious effects of not knowing the heat and material balances by 45 percent!
- Reason is straightforward:
 - If you lack strong empirical basis, next best substitute are knowledgeable people, especially operations, maintenance, startup, and core R&D personnel

Outline

- IPA background and methodology
- Industry history with similar projects
- DOE project history
- Reasons for project failure
- Best Practices for success
- Conclusions

Summing Up

- Raw solids processing projects face some unique challenges when trying to introduce new technology
 - Problems that are easily resolved in other types of processing such as waste handling and feedstock problems are more stubborn
 - Transfer of basic technical data from prior plants is both more important and more difficult

What Does This All Mean for a DOE Project Startup?

- \$100 million project
- DOE project:
 - Minor process modification with 2 new steps (6 total)
 - Medium level process problems
 - Nuclear
 - Raw solid feed
 - Poor FEL
- Industry (non-nuclear) project
 - No new technology, so no process problems
 - 6 total process steps
 - No raw solid feed
 - Good FEL

Startup Duration Example

Some Don'ts of New Technology Program Management

- Remember, most R&D is just plain work and can be planned, scheduled, and resourced as such
- Don't substitute good engineering for bad basic data
 - All you get is a conservatively designed, inoperable plant
- Never fast-track R&D
- Never fast-track new technology projects

More Don'ts

- Don't understate risks to get approval
- Don't do new technology projects without doing excellent front-end definition; risks will kill you
- Don't mismatch business objectives and new technology development realities
 - If success requires short-cutting to achieve cycle time, cancel the project
 - If business goal is an incremental improvement, a long, costly R&D effort will never work

Thank you for your attention!